M. Velasco Higgs CP properties in $\gamma\gamma$ collider: ζ_2 is the degree of circular polarization (ζ_3, ζ_1) are the degrees of linear polarization In s-channel production of Higgs:

$$\overline{\left|\mathcal{M}^{H_i}\right|^2} = \overline{\left|\mathcal{M}^{H_i}\right|_0^2} \left\{ \left[1 + \zeta_2 \tilde{\zeta}_2\right] + \mathcal{A}_1 \left[\zeta_2 + \tilde{\zeta}_2\right] + \mathcal{A}_2 \left[\zeta_1 \tilde{\zeta}_3 + \zeta_3 \tilde{\zeta}_1\right] - \mathcal{A}_3 \left[\zeta_1 \tilde{\zeta}_1 - \zeta_3 \tilde{\zeta}_3\right] \right\}$$

$$== 0 \text{ if CP is conserved}$$

$$== +1 (-1) \text{ for CP is conserved for A CP-Even (CP-Odd) Higgs}$$

- If $A_1 \neq 0$, $A_2 \neq 0$ and/or $|A_3| < 1$, the Higgs is a mixture of CP-Even and CP-Odd states
- Possible to search for CP violation in $\gamma\gamma \rightarrow H \rightarrow$ fermions without having to measure their polarization
- In bb, a $\leq 1\%$ asymmetry can be measure with 100 fb⁻¹ that is, in 1/2 years arXiv:0705.1089v2